US009489198B2

a2 United States Patent

Kapoor et al.

US 9,489,198 B2
*Nov. 8, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(63)

(1)

(52)

(58)

METHOD AND APPARATUS FOR
PERFORMING LOGICAL COMPARE
OPERATIONS

Applicant: Intel Corporation, Santa Clara, CA
US

Rajiv Kapoor, University Place, WA
(US); Ronen Zohar, Sunnyvale, CA
(US); Mark Buxton, Chandler, AZ
(US); Zeev Sperber, Zichron Yaakov
(IL); Koby Gottlieb, Kiryat Tivon (IL))
Intel Corporation, Santa Clara, CA
(US)

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

15/015,991
Feb. 4, 2016
Prior Publication Data
US 2016/0154647 Al Jun. 2, 2016
Related U.S. Application Data

Continuation of application No. 14/684,412, filed on
Apr. 12, 2015, now Pat. No. 9,268,565, which is a
continuation of application No. 13/763,598, filed on
Feb. 8, 2013, now Pat. No. 9,037,627, which is a

Inventors:

Assignee:

Notice:

Appl. No.:
Filed:

(Continued)
Int. CL.
GO6F 7/50 (2006.01)
GO6F 9/30 (2006.01)
(Continued)
U.S. CL
CPCcccue. GO6F 9/3001 (2013.01); GOGF 7/026

(2013.01); GO6F 9/30021 (2013.01);
(Continued)
Field of Classification Search

CPC GOGF 7/5443; GOGF 7/57, GOGF 7/48;
GOG6F 9/3001; GOGF 2207/3828

USPC 708/490, 671; 340/146.2
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,648,059 A
5,029,069 A

3/1987 Gregorcyk
7/1991 Sakamura

(Continued)

FOREIGN PATENT DOCUMENTS

EP
KR
WO

0 463 975
20-0152537
WO 96/17292

6/1991
7/1999
6/1996

OTHER PUBLICATIONS

Apple Develop Connection, “AltiVec Instruction Cross-Reference,”
2005, pp. 1-8.

(Continued)

Primary Examiner — Tan V. Mai
(74) Attorney, Agent, or Firm — Nicholson De Vos
Webster & Elliott LLP

(57) ABSTRACT

A method and apparatus for including in a processor instruc-
tions for performing logical-comparison and branch support
operations on packed or unpacked data. In one embodiment,
instruction decode logic decodes instructions for an execu-
tion unit to operate on packed data elements including
logical comparisons. A register file including 128-bit packed
data registers stores packed single-precision floating point
(SPFP) and packed integer data elements. The logical com-
parisons may include comparison of SPFP data elements and
comparison of integer data elements and setting at least one
bit to indicate the results. Based on these comparisons,
branch support actions are taken. Such branch support
actions may include setting the at least one bit, which in turn
may be utilized by a branching unit in response to a branch
instruction. Alternatively, the branch support actions may
include branching to an indicated target code location.

9 Claims, 17 Drawing Sheets

[Source1{127:0] 831 |

[Dest[127:0] 833]

et]

e =&
SN

o o

/ § ‘X‘
[
T)

\
Y
i \
; 4

i
) S

B

i
I
roo
P
|
i
|
!

Enable 860 oF
=

\

i

i \

B o
H |
L/ J 1
!
\
|

’127 120 116112411104 103_ 9696 8887 8079 7271 6463 6656 4647 4038 3231 2423 1615 87 Di
\ T T T H

i
H

v i ¥ 1 1 b
s t
P i i H 1 ? t
H . i .

T
T ; 1 ; 1 1

! ; \ ' 1 } (|
[T : : i !

US 9,489,198 B2
Page 2

Related U.S. Application Data

continuation of application No. 13/082,726, filed on
Apr. 8, 2011, now Pat. No. 8,380,780, which is a
continuation of application No. 11/525,706, filed on
Sep. 21, 2006, now Pat. No. 7,958,181.

(51) Int. CL
GOGF 7/02
GOGF 9/38

(52) US.CL
CPC ... GOGF 9/30029 (2013.01); GOGF 9/30036

(2013.01); GOGF 9/30094 (2013.01); GOGF
9/30098 (2013.01); GOGF 9/30145 (2013.01);
GOGF 9/30149 (2013.01); GOGF 9/3887

(2006.01)
(2006.01)

(2013.01)
(56) References Cited
U.S. PATENT DOCUMENTS
5,408,670 A 4/1995 Davies
5,907,842 A 5/1999 Mennemeier et al.
5,959,874 A 9/1999 Lin et al.
6,036,350 A 3/2000 Mennemeier et al.
6,317,824 B1* 11/2001 Thakkar GOG6F 9/30018
708/495
7,809,932 B1* 10/2010 Barryc....... GOGF 9/30145
712/229
2015/0106591 Al* 4/2015 Julier ... GO6F 9/30021
712/208
OTHER PUBLICATIONS
Freescale Semiconductor, “High-Performance Processors,

AltiVec(TM) Technology,” 2004, pp. 1-4.

Intel Corporation, Ron Curry, et al., “Extending the World’s Most
Popular Processor Architecture,” Sep. 2006, pp. 1-8.

Ramanathan, et al., “Extending the World’s Most Popular Processor
Architecture,” (White Paper) Intel corporation, Sep. 2006, 8 pages.
Available online at http://www.download.intel.com/technology/ar-
chitecture/new-instructions-paper.pdf.

Frey, et al., “PowerPC User Instruction Set Architecture—Book1
Version 2.02,” Sep. 2003, IBM, Chapter 3.3.9 (pp. 60-61), Chapter
4.6.7(p. 119) and Appendix B (pp. 156-157).

Intel Corporation, “Intel 64 and IA-32 Architectures Software
Developer’s Manual vol. 2B Instruction Set Reference. N-Z,” Nov.
2006, pp. i,ii,and 4-372 through 4-374.

Gwenapp, “AltiVec Vectorizes Power PC: Forthcoming Multimedia
Extensions Improve on MMX,” Microporocessor Report, vol. 12,
No. 6. 1998, pp. 5 pages.

J. Shipnes, Graphics Processing with the 88110 RISC Micropro-
cessor, IEEE Computer Society Intl Conference, Digest of Papers,
Feb. 24-28, 1992, pp. 169-174.

German Patent and Trademark Office, First Official Communication
dated Aug. 5, 2009 in a related application.

Chinese Patent Office, Second Office Action dated Sep. 11, 2009 in
related foreign patent application No. 2007101441872.

Korean Patent Office, Office Action dated Nov. 30, 2010 in Korean
patent application No. 2009-7005715.

State Intellectual Property Office, PR. China, First Office Action
dated Mar. 27,2009, in a related application.

Sai Zhongying, “Principles of Computer Architecture,” Science
Press, 2002, pp. 159-162.

Freescale Semiconductor, “High-Performannce Processors; Alti Vec
Technology,” 2004, pp. 1-4.

International Search Report and The Written Opinion of the Inter-
national Searching Authority, PCT/US2007/079235, Filed Sep. 21,
2007, Mailed Jan. 16, 2008, 9 pages. Search Authority—Korea.
Ramanatiaan, et al., “Extending the World’s Most Popular Proces-
sor Architecture,” Technoogy @]Intel Magazine, Oct. 2006. Avail-
able online at http://www.intel.com/technology/magazine/comput-
ing/new-instructions-1006.pdf.

* cited by examiner

U.S. Patent Nov. 8, 2016 Sheet 1 of 17 US 9,489,198 B2

o N Data Siorage
ain ROM Device 107
Display Memory g s
Device 104 ‘Tégzc
= : :
121 §§nsir “ 1—53
KT \
Input Davice] | -
22 l/ 142
Interconnect
Cursor 101
Cantrol
13
Hard Capy
Device —— Processor |
A 5 108
180
Becoder
Sound
Record/ légl femal Inter:
Playback e)
Device Connet
A—— ' Ragister
Logical Compare /‘—L'\ File(s)
GCircuitry T 150
145
Videe ||
128
Executicn Unit
130
Communication
Davice e
180 5,

100

FIG. la

U.S. Patent Nov. 8, 2016 Sheet 2 of 17 US 9,489,198 B2

! i
! §
§ Processing Core 110 f
H {
: :
P ™ N0 Bridge :
}| " 280 %
5 B UART | |
’ B - S
| | SDRAM | . 3
T oLzt ;
: _ | uss ;
: 292 |
| {SRAMCTL | . ;
E 7z | " ;
! i
] Biuetooth | !
: : - w UART |-
¢ -| Bumnt Flash 203 ,
—~=1 Interface i« > i
| |
' YO Expansion| 1
E o =t Inferface -vT-w
i |POMCIACF 264 ;
~te] Card CTL |« - ;
: 274 \f\ ;
i 295 |
¢ [TTCOTTC - !
e T g z
:-b-jg—ua- e . E
: 218 o i
i 214 |
: | Alt, Bus Maste¥ "J g
i interfacel. 277 !
,= —

FIG. 1b

US 9,489,198 B2

Sheet 3 of 17

Nov. 8, 2016

U.S. Patent

2 DI

= e o o m m m m e e o e m o o e A R Ak et mm An i s A8 K ks KA A e A 4 8 i S A A At Lk S Ak A ket e s b i W W AR R B e S o Y e T iy e Yy T o e

TOT e
...... P “ 5ot
“ mommwc R B -7 4 18p0as(]
¢ PORMSME T T wiaysAs on :
; SSBIBJAL | v
S J ISTAID0IA e

12174

¥
3

soasanosdory

B L L T

J0883004d0o0) {
1

U.S. Patent

Nov. 8, 2016 Sheet 4 of 17 US 9,489,198 B2
rmC«:-mrnl éignglmg FIG. 2a
¢ 207 ¢ "

Cache a -
' ister File
160 | Regg
Registers
2209 _
]B_q' 2123} | integer
R, 212} | Registers
. 201
Decoder : —_—
185
internal} | "212h i
Bus 53“""""'"{} L
170 | Instruction
- Pointer
Execution Register |
Unit o 2l
130 Status Begisle
- 0
Processor '
- 109

US 9,489,198 B2

U.S. Patent Nov. 8, 2016 Sheet 5 of 17
Ccmtr;tnsiigna.lﬂ '
Cache - .
» guister File
160 gt i
Registers Extension Registers |
209 £210
p 212al| integer | |XR, 213a
R, 2120} Registars | {XR, 213b
Decoder : 201] :
185 |
internal} |...
170 j63—0 128710
’ |
—— instruction|
Ex%m?tm . Pointer
Inj | ister
138 | Reggu :
"~ |Status Registers
Processor 208
~309

US 9,489,198 B2

Sheet 6 of 17

Nov. 8, 2016

U.S. Patent

lll

301

Y
¥
Store results in Register or Memory 304
\ 4
Stop)

Access Register File or Memory 302

Receive and Deceode Instruction
Enable Execution Unit with Operation 303

Start
A

FIG. 3

US 9,489,198 B2

Sheet 7 of 17

Nov. 8, 2016

U.S. Patent

p DIA

ZIF__ s1q 7] - ploMpen)) dqno(

VP a|anng paNed

el

pegnog | Lo1gnog

o £9+9
£2p sibuis pedtd

131

0 oulg { siug : gobug

£ sibuig

o TX €9 b5 56 96
Tt 119K poroeg

Lcl

O jeH ;. NeH | ZgEH ; m:mr P v IeH | S IRH m_m.x

e

fovenaw

L ieH

0 SLolL 1626 Zror ©ovd BL08 GBOB Lilel ZzL

(2r hg pajoed

0gila i zaicaivaica| 9aisa |8e! sgioigiligzigieia]

pgcial

0 GLeL 1E2C JvBY €9¥8 6108 G696 L1iZil 21

US 9,489,198 B2

Sheet 8 of 17

Nov. 8, 2016

U.S. Patent

§ OId
¢1s uonmuasaxdor 10)s1321-u1 prosm payded pausig

: ?

’ § 1
447945 M qaaqs “ qqqas qa-qas ” qq'qqs [arqae i §gags " qg qds
5 i) '

0 bm_‘ww €26 Iy 8y ¢£9v9 6L08 §696 _L.__Nﬁ‘fm_‘

0 Eoz,,j Nﬁm none)uasdEdas 13)S1321-Ul pIom poysed poudisupny \ £ piom
!

}
qg7qqq | Q97qqq
t

9949 | 9qg6q m g 494 W 99999 m ﬁ...nﬁ.w 49" 44q m
0 GLOL 1EZe Lver ¢€9V9 6108 G696 LilCLE LZb

115 woneuasaidos sysiBar-uy 94q paspoed paudig

0 } Z £ 14 g . 9 2 i+ B oL 1t 4} £l i Gl
a1hg mgm aikg elig aikg o;m g aodg Bilg aiig m;m, adg eilg eiig o&m a14g

“_ _ _ _ ‘ u

q- Qm.@ nm.a nm_n am_n nm_n am:a n_m~ nwun nw*n nw_a nm.n nm_a:am.n nm_n_ nm_n ‘a8

0 hw 5191 nmvN 1€ 28 mnc% iv8p mmwm mwvw vhu... mhcw Nmmm nmwm ncvﬁav _u:N:m:oNv FrA

01s uonwuosoadod yo3sidor-ul 5)4q payoded paudisun)

] L Z € P g g F3 g 8 ol 4} Zi £l 14 Gl
2kg 8ig m&m aig m&m atg m&m BiAg @¥g m&m aAg m&m s olig m;m aiig

- _ «

Tnn g nnwn nn_n nn_n gq | ﬂ nn“n nn a- nn_n qq _Q nn.ﬁ bn_n nn.n no.: q- Dnﬁn nnfn aq
0 i8 si 91 vaN r.mﬂn mﬂoQ hvwv mmwm nmvw YE7] 6 08 18 88 mmmm mov.vmr —._‘vﬂwwm:euw i}

US 9,489,198 B2

Sheet 9 of 17

Nov. 8, 2016

U.S. Patent

9 °DIA
LIS vonejuasardax a9ysidar-ui prompenb payded pausig
q4aq qg6q qgqq " aqqs m 9944 9994 4954 " " gods
0 €9 79 14}
91s uonesuasardax x)syd-ur paompenb payord paudisun
0999 qqaq 449 " goag m 99499 9499 4469 " " qa4q
0 €9 ¥0 34}

s1¢ vonrjuasardas J13351323-u1 paomejqunop paxded pausis

qQaq™ T7qqgs m qaqq Tqqgs m qoaa” Oags m quad qags
0 L€ 2¢ €919 56 96 LC}
p1S vonyeyuasardon 123s18a.1-ul pIomdjgnop pavped pousisury
qaaq" “-qqaq m qqag™ **qaad m qaqq° 9049 m aqqq’” ~qqaq
0 i€ 2¢ £9 %9 56 96 yrat

U.S. Patent

Nov. 8, 2016

Sheet 10 of 17

US 9,489,198 B2

f

ST
(s)

Receive instrnuction and

_ Decode 71

F

Access Register File or
Memory, SRC1 & DEST 702

Y

Enable Execution Unit with
Decoded instruction 703

O

int. Result 1= Dest
AND Source

714

l

Meodify Zero Flag
720

i e T A i e e e U A b ot A

Int. Result 2 =
[NOT Desi] AND
Source

15

¥

Modify Carry Flag
Pl

o
3

U.S. Patent

Nov. 8, 2016

Sheet 11 of 17

{ Start)

Decode 701h

¥
Heceive Instruction and

h 4

Memory, SRC1 & DEST 702b

Y

Enable Execution Unit with
Pecoded Instruction 703b

-

Int. Result 1 int. Result 2
[127:0] = DEST [127:0] = INOT
AND (bitwise) bf?hifsﬂ ;gg 1
SRCH1 (bitwise)
— 715b

if Int. Result { ==,
then ZF « 1, Else
ZF 0

720b

if int. Result 2 ==0,
then CF « 1; Else
CF 0

FIG. 7b

“~f

US 9,489,198 B2

o

Ly,

U.S. Patent Nov. 8, 2016 Sheet 12 of 17 US 9,489,198 B2

>

Yy
Reaceive Instruction and
Decode 701c

Access Register File or
Memaory, SRCT & DESTY 702¢

;

Enable Execution Unit with
Decoded Instruction 703¢

N

I

int. Result 11270} = int. Result 2[127.0] .=
SRC1H127:0] AND SCRC1[127.0] AND NOT
DEST[127:0] fide DEST{127:0] Ii5¢
ff Int. Result 1[127} ==0, if Int. Result 2[127] ==0,
AND Int. Result 1[85] == 0 AND Int, AND Int., Result 2{95] == 0 AND Int.
Result 1[63} == 0 AND Int. Resujt Result 2163] == 0 AND Inl. Result
{{31] == 2[31] ===
THEN ZF « 1; THEN CF « 1;
ELSE ZF « O ELSE CF«0
120¢ 121g

7220 ;

1
i
!
i
3
]
3
f
'
)
: l
t
1
!
'
'
1
i

o

)

(]

[

U.S. Patent Nov. 8,

2016 Sheet 13 of 17

US 9,489,198 B2

Stat)

Reageive Instruction and
Decode 7014

¥
Access Register File or
Memory, SRC1 & DEST 702d

r

Enable Execution Unit with
Decoded Instuction 703d

int. Resuft 1{127.0} ;=
SRC[127:0] AND

DEST[127.0] 114d

int. Result 2[127:0] :=
SCRCH[127:0] AND NOT
DEST[127:0] 715d

I Int. Result 1[127] ==0,
AND Int. Result 1[83]==0

THEN ZF « 1;
ELSE ZF 0

if inl. Result 2[127} ==0,
AND int. Result 2{63} ==

THEN CF « 1;
ELSE CF«§

)
(33
ot
(w8

FIG. 7d

700b

US 9,489,198 B2

Sheet 14 of 17

Nov. 8, 2016

U.S. Patent

ve ‘DI

| NN
bav e ae
- ot

i
v

P o

- e o

g L8 SL9L £TVZ JEZE 6COY ULbBF S§59% €3
w aoe _ 068 iodiuon uonessdp 858 k
i 49 !
_ !
| = S |
_ i ﬁMWu |
| ; i !
i i i
! ;
ﬂ m < « k a
,, W g Z8 3
L
x e
S T 2 S
5,

€8 loizzihsag

TEY lo:s2e]iemunog

98 ‘OId

US 9,489,198 B2

Sheet 15 of 17

Nov. 8, 2016

U.S. Patent

- 098 gcg
s
DOB JOAUDD UucBIBaD 49
088 =qeuy
s I I —

€ £9 & A
PA%S]

{o:2z1heaq

it £9 6 Lel

LEQ
o2z lieomog

T ok kv v T i v 4 v A e e e e e ok o

US 9,489,198 B2

Sheet 16 of 17

Nov. 8, 2016

U.S. Patent

28 DI

088 |

o068 eaued uolelado

qeuz o

ST08

N e o S R e R R S R s S R R R P W Y R SR A N R G RS S S A D A A R

e o e s ot o ey 8t s RS 1 m m mm mn A s e e et M 0 3 1t 2 e R mr o e e S s

££8
oLz iiseq

<

LER
{02z edunog

US 9,489,198 B2

Sheet 17 of 17

Nov. 8, 2016

U.S. Patent

AA0D Gdv0IsH
FAONO ALAEE XIATdd
474 .,\\ F 281
FQAOO IvV0OSd
AAODIO HLAEE \
976 «\\ ﬁ
~— 3817 mim
006 L//
[//N/fv
~
WL REEILE a g P EN(a gis WA QOW qaoad0 SEXIATAA
I 7
D96 1\\ 41449 lx.\ 0¥6 1\\ ocs b 0ce — 016 —

US 9,489,198 B2

1
METHOD AND APPARATUS FOR
PERFORMING LOGICAL COMPARE
OPERATIONS

RELATED APPLICATIONS

This is a Continuation of U.S. patent application Ser. No.
14/684,412, filed Apr. 12, 2015, now pending, which is a
Continuation of U.S. patent application Ser. No. 13/763,598,
filed Feb. 8, 2013, now U.S. Pat. No. 9,037,627, which is a
Continuation of U.S. patent application Ser. No. 13/082,726,
filed Apr. 8, 2011, now U.S. Pat. No. 8,380,780, which is a
Continuation of U.S. patent application Ser. No. 11/525,706,
filed Sep. 21, 2006, now U.S. Pat. No. 7,958,181.

FIELD OF THE INVENTION

This disclosure relates generally to the field of processors.
In particular, the disclosure relates to using a single control
signal to perform multiple logical compare operations on
multiple bits of data.

BACKGROUND OF THE INVENTION

In typical computer systems, processors are implemented
to operate on values represented by a large number of bits
(e.g., 64) using instructions that produce one result. For
example, the execution of an add instruction will add
together a first 64-bit value and a second 64-bit value and
store the result as a third 64-bit value. Multimedia applica-
tions (e.g., applications targeted at computer supported
cooperation (CSC—the integration of teleconferencing with
mixed media data manipulation), 2D/3D graphics, image
processing, video compression/decompression, recognition
algorithms and audio manipulation) require the manipula-
tion of large amounts of data. The data may be represented
by a single large value (e.g., 64 bits or 128 bits), or may
instead be represented in a small number of bits (e.g., 8 or
16 or 32 bits). For example, graphical data may be repre-
sented by 8 or 16 bits, sound data may be represented by 8
or 16 bits, integer data may be represented by 8, 16 or 32
bits, and floating point data may be represented by 32 or 64
bits.

To improve efficiency of multimedia applications (as well
as other applications that have the same characteristics),
processors may provide packed data formats. A packed data
format is one in which the bits typically used to represent a
single value are broken into a number of fixed sized data
elements, each of which represents a separate value. For
example, a 128-bit register may be broken into four 32-bit
elements, each of which represents a separate 32-bit value.
In this manner, these processors can more efficiently process
multimedia applications.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings.

FIGS. 1a-1c illustrate example computer systems accord-
ing to alternative embodiments of the invention.

FIGS. 24-2b illustrate register files of processors accord-
ing to alternative embodiments of the invention.

FIG. 3 illustrates a flow diagram for at least one embodi-
ment of a process performed by a processor to manipulate
data.

10

15

20

25

30

35

40

45

55

60

65

2

FIG. 4 illustrates packed data types according to alterna-
tive embodiments of the invention.

FIG. 5 illustrates in-register packed byte and in-register
packed word data representations according to at least one
embodiment of the invention.

FIG. 6 illustrates in-register packed doubleword and in-
register packed quadword data representations according to
at least one embodiment of the invention.

FIGS. 7a-7d are flow diagrams illustrating various
embodiments of processes for performing logical-compare,
set-zero-and-carry-flag operations.

FIGS. 8a-8c illustrate alternative embodiments of circuits
for performing logical-compare, set-zero-and-carry-flag
operations.

FIG. 9 is a block diagram illustrating various embodi-
ments of operation code formats for processor instructions.

DETAILED DESCRIPTION

Disclosed herein are embodiments of methods, systems
and circuits for including in a processor instructions for
performing logical compare operations on multiple bits of
data in response to a single control signal. The data involved
in the logical compare operations may be packed or
unpacked data. For at least one embodiment, a processor is
coupled to a memory. The memory has stored therein a first
datum and a second datum. The processor performs logical
compare operations on data elements in the first datum and
the second datum in response to receiving an instruction.
The logical compare operations may include a bitwise AND
of data elements in the first and second datum and may also
include a bitwise AND of the complement of data elements
of the first datum with data elements of the second datum.
At least two status flags of the processor are modified based
on the results of the logical compare operations. These two
status flags may include the zero flag and the carry flag.
These flags may be architecturally visible to application
programs, and may be part of a larger flag value, such as an
architecturally visible extended flags (EFLAGS) register.

These and other embodiments of the present invention
may be realized in accordance with the following teachings
and it should be evident that various modifications and
changes may be made in the following teachings without
departing from the broader spirit and scope of the invention.
The specification and drawings are, accordingly, to be
regarded in an illustrative rather than restrictive sense and
the invention measured only in terms of the claims.

DEFINITIONS

To provide a foundation for understanding the description
of the embodiments of the invention, the following defini-
tions are provided.

Bit X Through Bit Y:
defines a subfield of binary number. For example, bit six

through bit zero of the byte 00111010, (shown in base
two) represent the subfield 111010,. The “,” following
a binary number indicates base 2. Therefore, 1000,
equals 8,,, while F, equals 15,

R_: is a register. A register is any device capable of storing
and providing data. Further functionality of a register is
described below. A register is not necessarily, included on
the same die or in the same package as the processor.

SRC and DEST:
identify storage areas (e.g., memory addresses, registers,

etc.)

US 9,489,198 B2

3

Sourcel-i and Resultl-i and Destin:
represent data.

Overview

This application describes embodiments of methods,
apparatuses and systems for including in a processor instruc-
tions for logical compare operations on packed or unpacked
data. More specifically, the instructions may be for logically
comparing data and then setting the zero and carry flags
based on the comparisons. For at least one embodiment, two
logical compare operations are performed using a single
instruction as shown below in Table la and Table 1b. The
compare operations include a bit-wise logical AND of the
destination and source operands, as well as a bit-wise logical
AND of the complement of the destination operand with the
source operand. Table 1a shows a simplified representation
of one embodiment of the disclosed logical compare opera-
tions, while Table 1b shows a bit-level example of an
embodiment of the disclosed logical compare instructions,
given some sample values. For the embodiments illustrated
in Tables la and 1b, the data in the source and destination
operand may be of any data representation and is not
necessarily packed data, though it could be packed data.
Where the data of the source and/or destination operands is
a single entity of 128-bits, and therefore is not considered
“packed” data, it will be referred to herein as “unpacked”
data, which simply means that the data is not necessarily
subdivided into component representations and may be
considered a single data value. While the data in Table 1a is
represented, for simplicity of illustration, as a 32-bit value,
one of skill in the art will recognize that the concept being
illustrated in Tables 1a and 1b may be applied to data of any
length, including smaller data lengths (e.g., 4-bit, 8-bit, and

10

15

20

25

30

4
TABLE 1b

Logical Compare Dest, Source - Example Values

Destination Operand
10101010010101010000111100000000
Source Operand
01010101101010101111000000001111
Dest AND (bitwise) Source
00000000000000000000000000000000
[NOT Dest] AND Source
01010101101010101111000000001111
ZERO FLAG = TRUE

CARRY FLAG = FALSE

For at least one embodiment, the data values for the
source and destination operands may represent packed data.
Each of the packed components of the source and destina-
tion operands for such embodiment may represent any type
of data.

Tables 2a and 2b illustrate that components A through A,
and B, through B, each represent binary representations of
32-bit single-precision floating point numbers. However,
such illustration should not be taken to be limiting. One of
skill in the art will recognize that each of the components
may represent any data, including any integral or floating
point data format, as well as string format or any other type
of data format.

16-bit lengths) as well as larger data lengths (e.g., 64-bit and 35 TABLE 2a
128-bit lengths).
Logical Compare Dest, Source
TABLE 1la
A Ay Aj Ay Dest
Logical Compare Dest, Source 40 B, B, B, B, Source
Destination Operand Dest Dest AND (bitwise) Source Int.
Source Operand Source Resultl
Dest AND (bitwise) Source Int. [NOT Dest] AND (bitwise) Source Int.
Resultl Result?
[NOT Dest] AND (bitwise) Source Int.
Result? 45 Set if Int. Resultl = all 0’s; otherwise reset Zero
Set if Int. Resultl = all 0’s; otherwise reset Zero Flag
. . Flag Set if Int. Result2 = all 0’s; otherwise reset Carry
Set if Int. Result2 = all 0’s; otherwise reset Carry
Flag Flag
TABLE 2b
Logical Compare Dest, Source - Example Values
Al: -118.625 A2:0.15625 A3:-2.125 A4:2.5
1100001011101101 001111100010000 110000000000100 010000000010000
0100000000000000 000000000000000 000000000000000 000000000000000
00 00 00
B1: -0.0 B2: 0.0 B3: -0.0 B4: 0.0
100000000000000 000000000000000 100000000000000 000000000000000
000000000000000 000000000000000 000000000000000 000000000000000
00 00 00 00
Al AND B1 A2 AND B2 A3 AND B3 A4 AND B4
100000000000000 000000000000000 100000000000000 000000000000000
000000000000000 000000000000000 000000000000000 000000000000000
00 00 00 00
[NOT A1JAND [NOT A2] AND [NOT A3] AND [NOT] A4 AND
B1 B2 B3 B4

US 9,489,198 B2

5
TABLE 2b-continued

Logical Compare Dest, Source - Example Values

000000000000000 000000000000000 000000000000000 000000000000000
000000000000000 000000000000000 000000000000000 000000000000000
00 00 00 00
ZERO FLAG = FALSE
CARRY FLAG = TRUE
10

For packed embodiments, such as that illustrated by
Tables 2a and 2b, alternative embodiments may be
employed such that only certain bits of each packed element
are operated upon during the compare operation. For
example, at least some such alternative embodiments are
discussed below in connection with the discussion of FIGS.
Tc, 7d, 8b, and 8c¢.

One of skill in the art will recognize that intermediate
values “Int. Resultl” and “Int. Result2” are shown in Tables
la and 2a and that the third and fourth rows of binary values
are show in Tables 1b and 2b for ease of illustration only.
Their representation in Tables 1a through 2b should not be
taken to imply that such intermediate values are necessarily
stored within the processor, although they may be so stored
for at least one embodiment. Alternatively, for at least one
other embodiment, such intermediate values are determined
via circuitry without storing said values in a storage area.

Tables 1a, 1b, 2a and 2b, above, describe embodiments of
a “logical compare, set zero and carry flags” (“LCSZC”)
instruction that performs a bitwise AND operation on each
of the 128 bits of the source and destination operands, and
also performs a bitwise AND operation of each of the 128
bits of the source operand with each of the 128 bits of the
complemented value of the destination operand, and sets the
zero and carry flags according to the results of the AND
operations.

The setting of the zero and carry flags supports branching
behavior based on the logical comparisons. For at least one
embodiment, the LCSZC instruction may be followed by a
separate branch instruction that indicates the desired branch-
ing operation to be performed by the processor, base on the
value of one or both of the flags (see, e.g., pseudocode in
Table 4, below). One of skill in art will recognize that setting
of status flags are not the only hardware mechanism by
which branching operations may utilize the comparison
results, and other mechanisms may be implemented in order
to support branching based on the results of the compari-
sons. Thus, although specific embodiments described below
indicate that zero and carry tflags may be set as a result of the
logical comparison, such flag-setting in support of branching
is not required for all embodiments. Accordingly, the term
“LCSZC” as used herein should not be taken to be limiting,
in that the setting of the zero and carry flags is not necessary
for all embodiments.

For one alternative embodiment, for example, the branch-
ing behavior may be performed as a direct result of a variant
of the LCSZC instruction that fuses the comparison and
branching in one instruction, such as fused “test-and-
branch” instruction. For at least one embodiment of the
fused “test-and-branch” instruction, no status flag is set as a
result of the logical comparisons performed.

Alternative embodiments may vary the number of bits in
the data elements and the intermediate results. Also, alter-
native embodiments may compare only some bits of the
respective source and destination values. In addition, alter-
native embodiment may vary the number of data elements
used and the number of intermediate results generated. For

15

20

25

30

35

40

45

50

55

60

65

example, alternative embodiments may include but are not
limited to: a LCSZC instruction for an unsigned source and
a signed destination; a LCSZC instruction for a signed
source and an unsigned destination; a LCSZC instruction for
an unsigned source and an unsigned destination; and a
LCSZC instruction for a signed source and a signed desti-
nation. In each of the examples, said source and destination
may each contain packed data of 8-bit, 16-bit, 32-bit, or
64-bit components. Alternatively, said source and destina-
tion data is not packed, but is instead a 128-bit data element.
The packed nature of the source and destination need not be
symmetric, and the size of data for the source and destina-
tion, if both are packed, need not necessarily be the same.

Computer System

FIG. 1a illustrates an example computer system 100
according to one embodiment of the invention. Computer
system 100 includes an interconnect 101 for communicating
information. The interconnect 101 may include a multi-drop
bus, one or more point-to-point interconnects, or any com-
bination of the two, as well as any other communications
hardware and/or software.

FIG. 1a illustrates a processor 109, for processing infor-
mation, coupled with interconnect 101. Processor 109 rep-
resents a central processing unit of any type of architecture,
including a CISC or RISC type architecture.

Computer system 100 further includes a random access
memory (RAM) or other dynamic storage device (referred to
as main memory 104), coupled to interconnect 101 for
storing information and instructions to be executed by
processor 109. Main memory 104 also may be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions by processor 109.

Computer system 100 also includes a read only memory
(ROM) 106, and/or other static storage device, coupled to
interconnect 101 for storing static information and instruc-
tions for processor 109. Data storage device 107 is coupled
to interconnect 101 for storing information and instructions.

FIG. 1a also illustrates that processor 109 includes an
execution unit 130, a register file 150, a cache 160, a decoder
165, and an internal interconnect 170. Of course, processor
109 contains additional circuitry that is not necessary to
understanding the invention.

Decoder 165 is for decoding instructions received by
processor 109 and execution unit 130 is for executing
instructions received by processor 109. In addition to rec-
ognizing instructions typically implemented in general pur-
pose processors, decoder 165 and execution unit 130 rec-
ognize instructions, as described herein, for performing
logical-compare-and-set-zero-and-carry-flags (LCSZO)
operations. The decoder 165 and execution unit 130 recog-
nize instructions for performing LCSZC operations on both
packed and unpacked data.

Execution unit 130 is coupled to register file 150 by
internal interconnect 170. Again, the internal interconnect
170 need not necessarily be a multi-drop bus and may, in

US 9,489,198 B2

7

alternative embodiments, be a point-to-point interconnect or
other type of communication pathway.

Register file(s) 150 represents a storage area of processor
109 for storing information, including data. It is understood
that one aspect of the invention is the described instruction
embodiments for performing LCSZC operations on packed
or unpacked data. According to this aspect of the invention,
the storage area used for storing the data is not critical.
However, embodiments of the register file 150 are later
described with reference to FIGS. 24-2b

Execution unit 130 is coupled to cache 160 and decoder
165. Cache 160 is used to cache data and/or control signals
from, for example, main memory 104. Decoder 165 is used
for decoding instructions received by processor 109 into
control signals and/or microcode entry points. These control
signals and/or microcode entry points may be forwarded
from the decoder 165 to the execution unit 130.

In response to these control signals and/or microcode
entry points, execution unit 130 performs the appropriate
operations. For example, if an LCSZC instruction is
received, decoder 165 causes execution unit 130 to perform
the required comparison logic. For at least some embodi-
ments (such as those not implementing fused “test and
branch” operations), the execution unit 130 may set the zero
and carry flags accordingly (see, e.g., logical compare
circuitry 145). For such embodiments, a branch unit (not
shown) of the processor 109 may utilize the flags during
execution of a subsequent branch instruction that indicates a
target code location.

Alternatively, the execution unit 130 itself may include
branch circuitry (not shown) that effects a branch based on
the logical comparisons. For such embodiment, “branching
support” provided by an LCSZC instruction is a control
jump to a specified target code location, rather than the
setting of control flags. For at least one embodiment, the
branch circuitry that performs the jump, or “branch”, may be
part of the logical compare circuitry 145).

Decoder 165 may be implemented using any number of
different mechanisms (e.g., a look-up table, a hardware
implementation, a PLA, etc.). Thus, while the execution of
the various instructions by the decoder 165 and execution
unit 130 may be represented herein by a series of if/then
statements, it is understood that the execution of an instruc-
tion does not require a serial processing of these if/then
statements. Rather, any mechanism for logically performing
this if/then processing is considered to be within the scope
of the invention.

FIG. 1a additionally shows a data storage device 107
(e.g., a magnetic disk, optical disk, and/or other machine
readable media) can be coupled to computer system 100. In
addition, the data storage device 107 is shown to include
code 195 for execution by the processor 109. The code 195
can include one or more embodiments of an LCSZC instruc-
tion 142, and can be written to cause the processor 109 to
perform bit testing with the LCSZC instruction(s) 142 for
any number of purposes (e.g., motion video compression/
decompression, image filtering, audio signal compression,
filtering or synthesis, modulation/demodulation, etc.).

Computer system 100 can also be coupled via intercon-
nect 101 to a display device 121 for displaying information
to a computer user. Display device 121 can include a frame
buffer, specialized graphics rendering devices, a liquid crys-
tal display (LCD), and/or a flat panel display.

An input device 122, including alphanumeric and other
keys, may be coupled to interconnect 101 for communicat-
ing information and command selections to processor 109.
Another type of user input device is cursor control 123, such

10

15

20

25

30

35

40

45

50

55

60

65

8

as a mouse, a trackball, a pen, a touch screen, or cursor
direction keys for communicating direction information and
command selections to processor 109, and for controlling
cursor movement on display device 121. This input device
typically has two degrees of freedom in two axes, a first axis
(e.g., x) and a second axis (e.g., y), which allows the device
to specify positions in a plane. However, this invention
should not be limited to input devices with only two degrees
of freedom.

Another device that may be coupled to interconnect 101
is a hard copy device 124 which may be used for printing
instructions, data, or other information on a medium such as
paper, film, or similar types of media. Additionally, com-
puter system 100 can be coupled to a device for sound
recording, and/or playback 125, such as an audio digitizer
coupled to a microphone for recording information. Further,
the device 125 may include a speaker which is coupled to a
digital to analog (D/A) converter for playing back the
digitized sounds.

Computer system 100 can be a terminal in a computer
network (e.g., a LAN). Computer system 100 would then be
a computer subsystem of a computer network. Computer
system 100 optionally includes video digitizing device 126
and/or a communications device 190 (e.g., a serial commu-
nications chip, a wireless interface, an ethernet chip or a
modem, which provides communications with an external
device or network). Video digitizing device 126 can be used
to capture video images that can be transmitted to others on
the computer network.

For at least one embodiment, the processor 109 supports
an instruction set that is compatible with the instruction set
used by existing processors (such as, e.g., the Intel® Pen-
tium® Processor, Intel® Pentium® Pro processor, Intel®
Pentium® 1II processor, Intel® Pentium® III processor,
Intel® Pentium® 4 Processor, Intel® Itanium® processor,
Intel® Itanium® 2 processor, or the Intel® Core™ Duo
processor) manufactured by Intel Corporation of Santa
Clara, Calif. As a result, processor 109 can support existing
processor operations in addition to the operations of the
invention. Processor 109 may also be suitable for manufac-
ture in one or more process technologies and by being
represented on a machine readable media in sufficient detail,
may be suitable to facilitate said manufacture. While the
invention is described below as being incorporated into an
x86 based instruction set, alternative embodiments could
incorporate the invention into other instruction sets. For
example, the invention could be incorporated into a 64-bit
processor using an instruction set other than the x86 based
instruction set.

FIG. 15 illustrates an alternative embodiment of a data
processing system 102 that implements the principles of the
present invention. One embodiment of data processing sys-
tem 102 is an applications processor with Intel XScale™
technology. It will be readily appreciated by one of skill in
the art that the embodiments described herein can be used
with alternative processing systems without departure from
the scope of the invention.

Computer system 102 comprises a processing core 110
capable of performing LCSZC operations. For one embodi-
ment, processing core 110 represents a processing unit of
any type of architecture, including but not limited to a CISC,
a RISC or a VLIW type architecture. Processing core 110
may also be suitable for manufacture in one or more process
technologies and by being represented on a machine read-
able media in sufficient detail, may be suitable to facilitate
said manufacture.

US 9,489,198 B2

9

Processing core 110 comprises an execution unit 130, a
set of register file(s) 150, and a decoder 165. Processing core
110 also includes additional circuitry (not shown) which is
not necessary to the understanding of the present invention.

Execution unit 130 is used for executing instructions
received by processing core 110. In addition to recognizing
typical processor instructions, execution unit 130 recognizes
instructions for performing LCSZC operations on packed
and unpacked data formats. The instruction set recognized
by decoder 165 and execution unit 130 may include one or
more instructions for LCSZC operations, and may also
include other packed instructions.

Execution unit 130 is coupled to register file 150 by an
internal bus (which may, again, be any type of communi-
cation pathway including a multi-drop bus, point-to-point
interconnect, etc.). Register file 150 represents a storage area
of processing core 110 for storing information, including
data. As previously mentioned, it is understood that the
storage area used for storing the data is not critical. Execu-
tion unit 130 is coupled to decoder 165. Decoder 165 is used
for decoding instructions received by processing core 110
into control signals and/or microcode entry points. In
response to these control signals and/or microcode entry
points. These control signals and/or microcode entry points
may be forwarded to the execution unit 130. The execution
unit 130 may perform the appropriate operations, responsive
to receipt of the control signals and/or microcode entry
points. For at least one embodiment, for example, the
execution unit 130 may perform the logical comparisons
described herein and may also set the status flags as dis-
cussed herein or branch to a specified code location, or both.

Processing core 110 is coupled with bus 214 for commu-
nicating with various other system devices, which may
include but are not limited to, for example, synchronous
dynamic random access memory (SDRAM) control 271,
static random access memory (SRAM) control 272, burst
flash memory interface 273, personal computer memory
card international association (PCMCIA)/compact flash
(CF) card control 274, liquid crystal display (LLCD) control
275, direct memory access (DMA) controller 276, and
alternative bus master interface 277.

For at least one embodiment, data processing system 102
may also comprise an 1/O bridge 290 for communicating
with various /O devices via an I/O bus 295. Such 1/O
devices may include but are not limited to, for example,
universal asynchronous receiver/transmitter (UART) 291,
universal serial bus (USB) 292, Bluetooth wireless UART
293 and 1/O expansion interface 294. As with the other buses
discussed above, /O bus 295 may be any type of commu-
nication pathway, include a multi-drop bus, point-to-point
interconnect, etc.

At least one embodiment of data processing system 102
provides for mobile, network and/or wireless communica-
tions and a processing core 110 capable of performing
LCSZC operations on both packed and unpacked data.
Processing core 110 may be programmed with various
audio, video, imaging and communications algorithms
including discrete transformations, filters or convolutions;
compression/decompression techniques such as color space
transformation, video encode motion estimation or video
decode motion compensation; and modulation/demodula-
tion (MODEM) functions such as pulse coded modulation
(PCM).

FIG. 1c illustrates alternative embodiments of a data
processing system 103 capable of performing LCSZC opera-
tions on packed and unpacked data. In accordance with one
alternative embodiment, data processing system 103 may

10

15

20

25

30

35

40

45

50

55

60

65

10

include a chip package 310 that includes main processor
224, and one or more coprocessors 226. The optional nature
of additional coprocessors 226 is denoted in FIG. 1c¢ with
broken lines. One or more of the coprocessors 226 may be,
for example, a graphics co-processor capable of executing
SIMD instructions.

FIG. 1c illustrates that the data processor system 103 may
also include a cache memory 278 and an input/output system
265, both coupled to the chip package 310. The input/output
system 295 may optionally be coupled to a wireless interface
296.

Coprocessor 226 is capable of performing general com-
putational operations and is also capable of performing
SIMD operations. For at least one embodiment, the copro-
cessor 226 is capable of performing LCSZC operations on
packed and unpacked data.

For at least one embodiment, coprocessor 226 comprises
an execution unit 130 and register file(s) 209. At least one
embodiment of main processor 224 comprises a decoder 165
to recognize and decode instructions of an instruction set
that includes LCSZC instructions for execution by execution
unit 130. For alternative embodiments, coprocessor 226 also
comprises at least part of decoder 166 to decode instructions
of an instruction set that includes LCSZC instructions. Data
processing system 103 also includes additional circuitry (not
shown) which is not necessary to the understanding of the
present invention.

In operation, the main processor 224 executes a stream of
data processing instructions that control data processing
operations of a general type including interactions with the
cache memory 278, and the input/output system 295.
Embedded within the stream of data processing instructions
are coprocessor instructions. The decoder 165 of main
processor 224 recognizes these coprocessor instructions as
being of a type that should be executed by an attached
coprocessor 226. Accordingly, the main processor 224 issues
these coprocessor instructions (or control signals represent-
ing the coprocessor instructions) on the coprocessor inter-
connect 236 where from they are received by any attached
coprocessor(s). For the single-coprocessor embodiment
illustrated in FIG. 1c¢, the coprocessor 226 accepts and
executes any received coprocessor instructions intended for
it. The coprocessor interconnect may be any type of com-
munication pathway, including a multi-drop bus, point-to-
pointer interconnect, or the like.

Data may be received via wireless interface 296 for
processing by the coprocessor instructions. For one
example, voice communication may be received in the form
of a digital signal, which may be processed by the copro-
cessor instructions to regenerate digital audio samples rep-
resentative of the voice communications. For another
example, compressed audio and/or video may be received in
the form of a digital bit stream, which may be processed by
the coprocessor instructions to regenerate digital audio
samples and/or motion video frames.

For at least one alternative embodiment, main processor
224 and a coprocessor 226 may be integrated into a single
processing core comprising an execution unit 130, register
file(s) 209, and a decoder 165 to recognize instructions of an
instruction set that includes LCSZC instructions for execu-
tion by execution unit 130.

FIG. 2a illustrates the register file of the processor accord-
ing to one embodiment of the invention. The register file 150
may be used for storing information, including control/status
information, integer data, floating point data, and packed

US 9,489,198 B2

11

data. One of skill in the art will recognize that the foregoing
list of information and data is not intended to be an exhaus-
tive, all-inclusive list.

For the embodiment shown in FIG. 2a, the register file
150 includes integer registers 201, registers 209, status
registers 208, and instruction pointer register 211. Status
registers 208 indicate the status of processor 109, and may
include various status registers such as a zero flag and a
carry flag. Instruction pointer register 211 stores the address
of the next instruction to be executed. Integer registers 201,
registers 209, status registers 208, and instruction pointer
register 211 are all coupled to internal interconnect 170.
Additional registers may also be coupled to internal inter-
connect 170. The internal interconnect 170 may be, but need
not necessarily be, a multi-drop bus. The internal intercon-
nect 170 may instead may be any other type of communi-
cation pathway, including a point-to-point interconnect.

For one embodiment, the registers 209 may be used for
both packed data and floating point data. In one such
embodiment, the processor 109, at any given time, treats the
registers 209 as being either stack referenced floating point
registers or non-stack referenced packed data registers. In
this embodiment, a mechanism is included to allow the
processor 109 to switch between operating on registers 209
as stack referenced floating point registers and non-stack
referenced packed data registers. In another such embodi-
ment, the processor 109 may simultaneously operate on
registers 209 as non-stack referenced floating point and
packed data registers. As another example, in another
embodiment, these same registers may be used for storing
integer data.

Of course, alternative embodiments may be implemented
to contain more or less sets of registers. For example, an
alternative embodiment may include a separate set of float-
ing point registers for storing floating point data. As another
example, an alternative embodiment may including a first
set of registers, each for storing control/status information,
and a second set of registers, each capable of storing integer,
floating point, and packed data. As a matter of clarity, the
registers of an embodiment should not be limited in meaning
to a particular type of circuit. Rather, a register of an
embodiment need only be capable of storing and providing
data, and performing the functions described herein.

The various sets of registers (e.g., the integer registers
201, the registers 209) may be implemented to include
different numbers of registers and/or to different size regis-
ters. For example, in one embodiment, the integer registers
201 are implemented to store thirty-two bits, while the
registers 209 are implemented to store eighty bits (all eighty
bits are used for storing floating point data, while only
sixty-four are used for packed data). In addition, registers
209 may contain eight registers, R, 212a through R, 212/.
R, 212b, R, 212¢ and R; 2124 are examples of individual
registers in registers 209. Thirty-two bits of a register in
registers 209 can be moved into an integer register in integer
registers 201. Similarly, a value in an integer register can be
moved into thirty-two bits of a register in registers 209. In
another embodiment, the integer registers 201 each contain
64 bits, and 64 bits of data may be moved between the
integer register 201 and the registers 209. In another alter-
native embodiment, the registers 209 each contain 64 bits
and registers 209 contains sixteen registers. In yet another
alternative embodiment, registers 209 contains thirty-two
registers.

FIG. 25 illustrates the register file of the processor accord-
ing to one alternative embodiment of the invention. The
register file 150 may be used for storing information, includ-

10

15

20

25

30

40

45

50

55

60

65

12

ing control/status information, integer data, floating point
data, and packed data. In the embodiment shown in FIG. 25,
the register file 150 includes integer registers 201, registers
209, status registers 208, extension registers 210, and
instruction pointer register 211. Status registers 208, instruc-
tion pointer register 211, integer registers 201, registers 209,
are all coupled to internal interconnect 170. Additionally,
extension registers 210 are also coupled to internal inter-
connect 170. The internal interconnect 170 may be, but need
not necessarily be, a multi-drop bus. The internal intercon-
nect 170 may instead may be any other type of communi-
cation pathway, including a point-to-point interconnect.
For at least one embodiment, the extension registers 210
are used for both packed integer data and packed floating
point data. For alternative embodiments, the extension reg-
isters 210 may be used for scalar data, packed Boolean data,
packed integer data and/or packed floating point data. Of
course, alternative embodiments may be implemented to
contain more or less sets of registers, more or less registers
in each set or more or less data storage bits in each register
without departing from the broader scope of the invention.
For at least one embodiment, the integer registers 201 are
implemented to store thirty-two bits, the registers 209 are
implemented to store eighty bits (all eighty bits are used for
storing floating point data, while only sixty-four are used for
packed data) and the extension registers 210 are imple-
mented to store 128 bits. In addition, extension registers 210
may contain eight registers, XR, 213a through XR. 2134.
XR, 213a, XR, 2136 and XR, 213¢ are examples of indi-
vidual registers in registers 210. For another embodiment,
the integer registers 201 each contain 64 bits, the extension
registers 210 each contain 64 bits and extension registers
210 contains sixteen registers. For one embodiment two
registers of extension registers 210 may be operated upon as
a pair. For yet another alternative embodiment, extension
registers 210 contains thirty-two registers.
FIG. 3 illustrates a flow diagram for one embodiment of
a process 300 to manipulate data according to one embodi-
ment of the invention. That is, FIG. 3 illustrates the process
followed, for example, by processor 109 (see, e.g., FIG. 1a)
while performing a LCSZC operation on packed data, per-
forming a LCSZC operation on unpacked data, or perform-
ing some other operation. Process 300 and other processes
herein disclosed are performed by processing blocks that
may comprise dedicated hardware or software or firmware
operation codes executable by general purpose machines or
by special purpose machines or by a combination of both.
FIG. 3 illustrates that processing for the method begins at
“Start” and proceeds to processing block 301. At processing
block 301, the decoder 165 (see, e.g., FIG. 1a) receives a
control signal from either the cache 160 (see, e.g., FIG. 1a)
or interconnect 101 (see, e.g., FIG. 1a). The control signal
received at block 301 may be, for at least one embodiment,
a type of control signal commonly referred to as a software
“instruction.” Decoder 165 decodes the control signal to
determine the operations to be performed. Processing pro-
ceeds from processing block 301 to processing block 302.
At processing block 302, decoder 165 accesses the reg-
ister file 150 (FIG. 1a), or a location in memory (see, e.g.,
main memory 104 or cache memory 160 of FIG. 1a).
Registers in the register file 150, or memory locations in the
memory, are accessed depending on the register address
specified in the control signal. For example, the control
signal for an operation can include SRC1, SRC2 and DEST
register addresses. SRC1 is the address of the first source
register. SRC2 is the address of the second source register.
In some cases, the SRC2 address is optional as not all

US 9,489,198 B2

13

operations require two source addresses. If the SRC2
address is not required for an operation, then only the SRC1
address is used. DEST is the address of the destination
register where the result data is stored. For at least one
embodiment, SRC1 or SRC2 may also used as DEST in at
least one of the control signals recognized by the decoder
165.

The data stored in the corresponding registers is referred
to as Sourcel, Source2, and Result respectively. In one
embodiment, each of these data may be sixty-four bits in
length. For alternative embodiments, one or more of these
data may be other lengths, such as one hundred twenty-eight
bits in length.

For another embodiment of the invention, any one, or all,
of SRC1, SRC2 and DEST, can define a memory location in
the addressable memory space of processor 109 (FIG. 1a) or
processing core 110 (FIG. 15). For example, SRC1 may
identify a memory location in main memory 104, while
SRC2 identifies a first register in integer registers 201 and
DEST identifies a second register in registers 209. For
simplicity of the description herein, the invention will be
described in relation to accessing the register file 150.
However, one of skill in the art will recognize that these
described accesses may be made to memory instead.

From block 302, processing proceeds to processing block
303. At processing block 303, execution unit 130 (see, e.g.,
FIG. 1a) is enabled to perform the operation on the accessed
data.

Processing proceeds from processing block 303 to pro-
cessing block 304. At processing block 304, the result is
stored back into register file 150 or memory according to
requirements of the control signal. Processing then ends at
“Stop”.

Data Storage Formats

FIG. 4 illustrates packed data-types according to one
embodiment of the invention. Four packed and one
unpacked data formats are illustrated, including packed byte
421, packed half 422, packed single 423 packed double 424,
and unpacked double quadword 412.

The packed byte format 421, for at least one embodiment,
is one hundred twenty-eight bits long containing sixteen data
elements (B0-B15). Each data element (B0-B15) is one byte
(e.g., 8 bits) long.

The packed half format 422, for at least one embodiment,
is one hundred twenty-eight bits long containing eight data
elements (Half 0 through Half 7). Each of the data elements
(Half 0 through Half 7) may hold sixteen bits of information.
Each of these sixteen-bit data elements may be referred to,
alternately, as a “half word” or “short word” or simply
“word.”

The packed single format 423, for at least one embodi-
ment, may be one hundred twenty-eight bits long and may
hold four 423 data elements (Single 0 through Single 3).
Each of the data elements (Single 0 through Single 3) may
hold thirty-two bits of information. Each of the 32-bit data
elements may be referred to, alternatively, as a “dword” or
“double word”. Each of the data elements (Single 0 through
Single 3) may represent, for example, a 32-bit single pre-
cision floating point value, hence the term “packed single”
format.

The packed double format 424, for at least one embodi-
ment, may be one hundred twenty-eight bits long and may
hold two data elements. Each data element (Double 0,
Double 1) of the packed double format 424 may hold
sixty-four bits of information. Each of the 64-bit data

10

20

25

30

35

40

45

50

55

60

65

14

elements may be referred to, alternatively, as a “qword” or
“quadword”. Each of the data elements (Double 0, Double
1) may represent, for example, a 64-bit double precision
floating point value, hence the term “packed double” format.

The unpacked double quadword format 412 may hold up
to 128 bits of data. The data need not necessarily be packed
data. For at least one embodiment, for example, the 128 bits
of information of the unpacked double quadword format 412
may represent a single scalar datum, such as a character,
integer, floating point value, or binary bit-mask value.
Alternatively, the 128 bits of the unpacked double quadword
format 412 may represent an aggregation of unrelated bits
(such as a status register value where each bit or set of bits
represents a different flag), or the like.

For at least one embodiment of the invention, the data
elements of the packed single 423 and packed double 424
formats may be packed floating point data elements as
indicated above. In an alternative embodiment of the inven-
tion, the data elements of the packed single 423 and packed
double 424 formats may be packed integer, packed Boolean
or packed floating point data elements. For another alterna-
tive embodiment of the invention, the data elements of
packed byte 421, packed half 422, packed single 423 and
packed double 424 formats may be packed integer or packed
Boolean data elements. For alternative embodiments of the
invention, not all of the packed byte 421, packed half 422,
packed single 423 and packed double 424 data formats may
be permitted or supported.

FIGS. 5 and 6 illustrate in-register packed data storage
representations according to at least one embodiment of the
invention.

FIG. 5 illustrates unsigned and signed packed byte in-
register formats 510 and 511, respectively. Unsigned packed
byte in-register representation 510 illustrates the storage of
unsigned packed byte data, for example in one of the 128-bit
extension registers XR,, 213a through XR, 213/ (see, e.g.,
FIG. 2b). Information for each of sixteen byte data elements
is stored in bit seven through bit zero for byte zero, bit fifteen
through bit eight for byte one, bit twenty-three through bit
sixteen for byte two, bit thirty-one through bit twenty-four
for byte three, bit thirty-nine through bit thirty-two for byte
four, bit forty-seven through bit forty for byte five, bit
fifty-five through bit forty-eight for byte six, bit sixty-three
through bit fifty-six for byte seven, bit seventy-one through
bit sixty-four for byte eight, bit seventy-nine through bit
seventy-two for byte nine, bit eighty-seven through bit
eighty for byte ten, bit ninety-five through bit eighty-eight
for byte eleven, bit one hundred three through bit ninety-six
for byte twelve, bit one hundred eleven through bit one
hundred four for byte thirteen, bit one hundred nineteen
through bit one hundred twelve for byte fourteen and bit one
hundred twenty-seven through bit one hundred twenty for
byte fifteen.

Thus, all available bits are used in the register. This
storage arrangement increases the storage efficiency of the
processor. As well, with sixteen data elements accessed, one
operation can now be performed on sixteen data elements
simultaneously.

Signed packed byte in-register representation 511 illus-
trates the storage of signed packed bytes. Note that the
eighth (MSB) bit of every byte data element is the sign
indicator (“s”).

FIG. 5 also illustrates unsigned and signed packed word
in-register representations 512 and 513, respectively.

Unsigned packed word in-register representation 512
shows how extension registers 210 store eight word (16 bits
each) data elements. Word zero is stored in bit fifteen

US 9,489,198 B2

15

through bit zero of the register. Word one is stored in bit
thirty-one through bit sixteen of the register. Word two is
stored in bit forty-seven through bit thirty-two of the regis-
ter. Word three is stored in bit sixty-three through bit
forty-eight of the register. Word four is stored in bit seventy-
nine through bit sixty-four of the register. Word five is stored
in bit ninety-five through bit eighty of the register. Word six
is stored in bit one hundred eleven through bit ninety-six of
the register. Word seven is stored in bit one hundred twenty-
seven through bit one hundred twelve of the register.

Signed packed word in-register representation 513 is
similar to unsigned packed word in-register representation
512. Note that the sign bit (“s”) is stored in the sixteenth bit
(MSB) of each word data element.

FIG. 6 illustrates unsigned and signed packed doubleword
in-register formats 514 and 515, respectively. Unsigned
packed doubleword in-register representation 514 shows
how extension registers 210 store four doubleword (32 bits
each) data elements. Doubleword zero is stored in bit
thirty-one through bit zero of the register. Doubleword one
is stored in bit sixty-three through bit thirty-two of the
register. Doubleword two is stored in bit ninety-five through
bit sixty-four of the register. Doubleword three is stored in
bit one hundred twenty-seven through bit ninety-six of the
register.

Signed packed double-word in-register representation 515
is similar to unsigned packed quadword in-register repre-
sentation 516. Note that the sign bit (“s”) is the thirty-second
bit (MSB) of each doubleword data element.

FIG. 6 also illustrates unsigned and signed packed quad-
word in-register formats 516 and 517, respectively.
Unsigned packed quadword in-register representation 516
shows how extension registers 210 store two quadword (64
bits each) data elements. Quadword zero is stored in bit
sixty-three through bit zero of the register. Quadword one is
stored in bit one hundred twenty-seven through bit sixty-
four of the register.

Signed packed quadword in-register representation 517 is
similar to unsigned packed quadword in-register represen-
tation 516. Note that the sign bit (“s”) is the sixty-fourth bit
(MSB) of each quadword data element.

Logical Compare-and-Swap,
Set-Zero-and-Carry-Flags Operation(s)

For at least one embodiment of the invention, the SRC1
register may hold packed data or an unpacked double
quadword of data (Sourcel) and the DEST register may also
hold packed data or an unpacked double quadword of data
(Dest). The Dest value in the DEST register or the Sourcel
value in the SRC1 register, for at least one embodiment, may
be a double quadword of unpacked data to be used as a
bitwise mask value.

Generally, in the first step of the LCSZC instruction, two
compare operations are preformed. A first intermediate
result is generated by performing an independent logical
comparison (bitwise AND operation) of each bit in Sourcel
with the respective bit of Dest. A second intermediate result
is generated by performing an independent logical compari-
son (bitwise AND operation) of each bit in Sourcel with the
complement of the respective bit of Dest. These intermediate
results may be stored in temporary storage locations (such
as, e.g., a register), or may not be stored by the processor at
all.

FIG. 7a is a flow diagram for a general method 700 for
performing LCSZC operations according to at least one
embodiment of the invention. Process 700 and other pro-

10

15

20

25

30

35

40

45

50

55

60

65

16

cesses herein disclosed are performed by processing blocks
that may comprise dedicated hardware or software or firm-
ware operation codes executable by general purpose
machines or by special purpose machines or by a combina-
tion of both. FIGS. 7a through 7d are discussed in the
following paragraphs with reference to FIG. 1a.

FIG. 7a illustrates that the method 700 begins at “Start”
and proceeds to processing block 701. At processing block
701, decoder 165 decodes the control signal received by
processor 109. Thus, decoder 165 decodes the operation
code for a LCSZC instruction. Processing then proceeds
from processing block 701 to processing block 702.

At processing block 702, via internal bus 170, decoder
165 accesses registers 209 in register file 150 given the
SRC1 and DEST addresses encoded in the instruction. For
at least one embodiment, the addresses that are encoded in
the instruction each indicate an extension register (see, e.g.,
extension registers 210 of FIG. 25). For such embodiment,
the indicated extension registers 210 are accessed at block
702 in order to provide execution unit 130 with the data
stored in the SRC1 register (Sourcel), and the data stored in
the DEST register (Dest). For at least one embodiment,
extension registers 210 communicate the data to execution
unit 130 via internal bus 170.

From processing block 702, processing proceeds to pro-
cessing block 703. At processing block 703, decoder 165
enables execution unit 130 to perform the instruction. For at
least one embodiment, such enabling 703 is performed by
sending one or more control signals to the execution unit to
indicate the desired operation (LCZCS). From block 703,
processing proceeds to processing blocks 714 and 715.
While blocks 714 and 715 are shown in parallel, one of skill
in the art will recognize that such operations need be
performed exactly simultaneously as long as they are per-
formed in the same cycle or set of cycles and that, for at least
one alternative embodiment, the processing of blocks 714
and 715 may be performed serially. Different embodiments
thus may perform the processing of blocks 714 and 715 in
parallel, in series, or in some combination of serial and
parallel operations.

At processing block 714, the following is performed. All
or some of Sourcel bits are logically AND’ed with the same
respective bits of the Dest value. Similarly, at processing
block 715, all or some of Sourcel bits are logically AND’ed
with the complement of the same respective bits of the Dest
value.

From block 714, processing proceeds to block 720. From
block 715, processing proceeds to block 721.

At processing block 720, the state of the processor is
modified based on the results of the comparison performed
at processing block 714. Similarly, at processing block 721
the state of the processor is modified based on the results of
the comparison preformed at processing block 715. One of
skill in the art will note that the method 700 illustrated in
FIG. 7a is non-destructive, in that neither the Sourcel nor
Dest operand values are modified as a result of the LCSZC
operation. Instead, the zero flag is modified at block 720 and
the carry flag is modified at block 721.

At processing block 720, the value of the zero flag is set
to a true value (e.g., a logic-high value), if all bits of
Intermediate Result 1 are equal to zero (e.g., a logic-low
value). If, however, even one bit of the Intermediate Result
1 is a logic-high value, then the zero flag is set to a false
value (e.g., logic-low value) at block 720.

At processing block 721, the value of the carry flag is set
to a true value (e.g., a logic-high value), if all bits of
Intermediate Result 2 are equal to zero (e.g., a logic-low

US 9,489,198 B2

17

value). If, however, even one bit of the Intermediate Result
2 is a logic-high value, then the carry flag is set to a false
value (e.g., logic-low value) at block 721.

It will be appreciated that alternative embodiments of
process 700 may implement only processing blocks 714 and
720, but not processing blocks 715 and 721, or only pro-
cessing blocks 715 and 721, but not processing blocks 714
and 720. It will also be appreciated that alternative embodi-
ments of process 700 may implement additional processing
blocks to support additional variations of the LCSZC
instructions.

From blocks 720 and 721, processing may optionally
proceed to block 722. At block 722, other state bits within
the processor may be modified. For at least one embodiment,
these state bits may include, for example, one or more other
architecturally visible status flag values. These flags may be
one- or two-bit values and may include parity (PF), auxiliary
carry (AF), sign (SF), trap (TF), interrupt enable/disable
(IF), direction (DF), overflow (OF), I/O privilege level
(IOPL), nested task (NT), resume (RF), virtual 8086 mode
(VM), alignment check (AC), virtual interrupt (VIF), virtual
interrupt pending (FIP), and CPU identifier (ID) flags and
the like. Of course, the preceding listing of specific flags is
intended to be illustrative only; other embodiments may
include fewer, more, or different flags.

From optional block 722, processing ends at “End.” For
embodiments that do not include optional block 722, pro-
cessing ends at “End” after the processing at blocks 720 and
721.

FIG. 74 illustrates a flow diagram for at least one specific
embodiment 7005 of the general method 700 illustrated in
FIG. 7a. For the specific embodiment 7005 illustrated in
FIG. 75, the LCSZC operation is performed on Sourcel and
Dest data values that are 128 bits in length, and which may
or may not be packed data. (Of course, one of skill in the art
will recognize that the operations illustrated in FIG. 75 may
also be performed for data values of other lengths, including
those that are smaller or larger than 128 bits).

Processing blocks 7015 through 7035 operate essentially
the same for method 7005 as do processing blocks 701
through 703 that are described above in connection with
method 700, illustrated in FIG. 7a. When decoder 165
enables execution unit 130 to perform the instruction at
block 703c¢, the instruction is an LCSZC instruction for
performing logical AND comparisons of respective bits of
the Sourcel and Dest values. (See, e.g., signed packed
doubleword in-register representation 515 illustrated in FIG.
6). Such instruction may be referred to by an instruction
mnemonic that may be used by application programmers,
such as “PTEST”. From block 703¢, processing proceeds to
blocks 714¢ and 715¢. Again, blocks 714¢ and 715¢ may be,
but need not necessarily be, performed in parallel.

From processing block 7034, processing proceeds to
processing blocks 71456 and 715b. As indicated above in
connection with processing blocks 714 and 715 of FIG. 7a,
it should be noted again that, although blocks 7145 and 7155
are illustrated in FIG. 75 as being performed in parallel, the
invention should be construed to be limited in this regard.
Instead, different embodiments may perform the processing
of blocks 7146 and 7154 in parallel, in series, or in some
combination of serial and parallel operations.

At processing block 7144, the following is performed. All
of Sourcel bits are logically AND’ed with the same respec-
tive bits of the Dest value. That is, bits [127:0] of Interme-
diate Result 1 are assigned the result of bitwise AND
operations of the respective bits of Sourcel [127:0] with
Dest [127:0].

25

30

40

45

18

Similarly, at processing block 71554, all of Sourcel bits are
logically AND’ed with the complement of the same respec-
tive bits of the Dest value. That is, bits [127:0] of Interme-
diate Result 2 are assigned the result of bitwise AND
operations of the bits of Sourcel [127:0] with the respective
complemented bits of Dest [127:0].

From block 7145, processing proceeds to block 72054.
From block 7155, processing proceeds to block 72164.

At processing block 7204, the state of the processor is
modified based on the results of the comparison performed
at processing block 71456. Similarly, at processing block
7215 the state of the processor is modified based on the
results of the comparison preformed at processing block
715b. One of skill in the art will note that the method 7005
illustrated in FIG. 754 is non-destructive, in that neither the
Sourcel nor Dest operand values are modified as a result of
the LCSZC operation. Instead, the zero flag is modified at
block 7205 and the carry flag is modified at block 7215.

At processing block 7205, the value of the zero flag is set
to a true value (e.g., a logic-high value), if all bits of
Intermediate Result 1 (e.g., bits [127:0] of Intermediate
Result 1) are equal to zero (e.g., a logic-low value). If,
however, even one bit of the Intermediate Result 1 is a
logic-high value, then the zero flag is set to a false value
(e.g., logic-low value) at block 7205.

At processing block 72154, the value of the carry flag is set
to a true value (e.g., a logic-high value), if all bits of
Intermediate Result 2 (e.g., bits [127:0] of Intermediate
Result 2) are equal to zero (e.g., a logic-low value). If,
however, even one bit of the Intermediate Result 2 is a
logic-high value, then the carry flag is set to a false value
(e.g., logic-low value) at block 7215.

It will be appreciated that alternative embodiments of
process 7005 may implement only processing block 7145
and 7204 and not processing block 7156 and 7215, or only
processing blocks 7155 and 7215 and not processing blocks
7145 and 7205b. It will also be appreciated that alternative
embodiments of process 7005 may implement additional
processing blocks to support additional variations of the
LCSZC instructions.

From blocks 7206 and 7215, processing may optionally
proceed to block 722b. At block 7225, other state bits within
the processor may be modified. For the embodiment illus-
trated in FIG. 75, the AF (auxiliary carry), OF (overtlow), PF
(parity) and SF (sign) flags are assigned to a logic-low value
at block 7225.

From optional block 72254, processing ends at “End.” For
embodiments that do not include optional block 72254,
processing ends at “End” after the processing at blocks 7205
and 7215.

It will be appreciated that alternative embodiments of
processing blocks 714, 714b, 715, or 7156 may perform
logical comparison operations on signed or unsigned data
elements or on a combination of both.

FIG. 7¢ illustrates a flow diagram for at least one alter-
native specific embodiment 700¢ of the general method 700
illustrated in FIG. 7a. For the specific embodiment 700¢
illustrated in FIG. 7¢, the LCSZC operation is performed on
Sourcel and Dest data values that are 128 bits in length. The
source or destination operand, or both, may be packed, in
that the 128-bit data value of the source operand represents
four packed 32-bit (“doubleword”) data elements. The data
elements may each represent, for example, thirty-two bit
signed single-precision floating point values.

Of course, one of skill in the art will recognize that the
operations illustrated in FIG. 7¢ may also be performed for
data values of other lengths, including those that are smaller

US 9,489,198 B2

19

or larger than 128 bits and for other sizes of data elements,
including bytes (8 bits) and/or short words (16 bits).

Processing blocks 701¢ through 703¢ operate essentially
the same for method 700c¢ as do processing blocks 701
through 703 that are described above in connection with
method 700, illustrated in FIG. 7a. An exception to the
foregoing statement is that, for processing block 703¢, when
decoder 165 enables execution unit 130 to perform the
instruction, the instruction is a LCSZC instruction for per-
forming logical AND comparisons of the MSB of each
32-bit doubleword of the Sourcel and Destination values.
(See, e.g., signed packed doubleword in-register represen-
tation 515 illustrated in FIG. 6). Such instruction may be
referred to by an instruction mnemonic to be used by
programmers, such as “TESTPS”, where “PS” indicates
Packed Single-precision data elements.

From block 703¢, processing proceeds to blocks 714¢ and
715¢. Again, blocks 714¢ and 715¢ may be, but need not
necessarily be, performed in parallel.

At processing block 714c, the following is performed. All
of Sourcel bits are logically AND’ed with the same respec-
tive bits of the Dest value. That is, bits [127:0] of Interme-
diate Result 1 are assigned the result of bitwise AND
operations of the respective bits of Sourcel [127:0] with
Dest [127:0].

Similarly, at processing block 715c¢, all of Sourcel bits are
logically AND’ed with the complement of the same respec-
tive bits of the Dest value. That is, bits [127:0] of Interme-
diate Result 2 are assigned the result of bitwise AND
operations of the bits of Sourcel [127:0] with the respective
complemented bits of Dest [127:0].

From block 714c, processing proceeds to block 720c.
From block 715¢, processing proceeds to block 721c.

At block 720c¢, the MSB of each 32-bit double-word of the
first intermediate value, Intermediate Value 1, is determined.
If bits 127, 95, 63 and 31 of Intermediate Value 1 are equal
to zero, then the zero flag is set to a logic-high value at block
720c. Otherwise, the zero flag is set to a logic-low value at
block 720c.

Similarly, at block 721¢, the MSB of each 32-bit double-
word of the second intermediate value, Intermediate Value 2,
is determined. If bits 127, 95, 63 and 31 of Intermediate
Value 2 are equal to zero, then the carry flag is set to a
logic-high value at block 721¢. Otherwise, the carry flag is
set to a logic-low value at block 721¢. Neither the original
value (Sourcel) of the source register (SRC1) nor the
original value (Dest) of the destination register (DEST) is
modified as a result of the processing of the method 700c.

From block 720¢ and 721¢, processing proceeds either to
“End” or to optional processing block 722¢. At block 722¢,
other state bits within the processor may be modified. For
the embodiment illustrated in FIG. 7¢, the AF (auxiliary
carry), OF (overflow), PF (parity) and SF (sign) flags are
assigned to a logic-low value at block 722c¢.

For embodiments that do not include optional block 722¢,
processing ends at “End” after the processing at blocks 720¢
and 721c¢. For embodiments that do include optional block
722c¢, processing ends after completion of the processing
block 722c.

FIG. 7d illustrates a flow diagram for at least one alter-
native specific embodiment 7004 of the general method 700
illustrated in FIG. 7a. For the specific embodiment 7004
illustrated in FIG. 7d, the LCSZC operation is performed on
Sourcel and Dest data values that are 128 bits in length. The
source or destination operand, or both, may be packed, in
that the 128-bit data value of the source operand represents
two packed 64-bit data elements. The data elements may

10

15

20

25

30

35

40

45

50

55

60

65

20

each represent, for example, sixty-four bit signed double-
precision floating point values.

Of course, one of skill in the art will recognize that the
operations illustrated in FIG. 74 may also be performed for
data values of other lengths, including those that are smaller
or larger than 128 bits and for other sizes of data elements,
including bytes (8 bits) and/or short words (16 bits).

Processing blocks 7014 through 7034 operate essentially
the same for method 700c¢ as do processing blocks 701
through 703 that are described above in connection with
method 700, illustrated in FIG. 7a. An exception to the
foregoing statement is that, for processing block 7034, when
decoder 165 enables execution unit 130 to perform the
instruction, the instruction is a LCSZC instruction for per-
forming logical AND comparisons of the MSB of each
64-bit double-word of the Sourcel and Destination values.
(See, e.g., signed packed quadword in-register representa-
tion 517 illustrated in FIG. 6). Such instruction may be
referred to by an instruction mnemonic to be used by
programmers, such as “TESTPD”, where “PD” indicates
Packed Double-precision data elements.

From block 703d, processing proceeds to blocks 7144 and
715d. Again, blocks 714d and 7154 may be, but need not
necessarily be, performed in parallel.

At processing block 7144, the following is performed. All
of Sourcel bits are logically AND’ed with the same respec-
tive bits of the Dest value. That is, bits [127:0] of Interme-
diate Result 1 are assigned the result of bitwise AND
operations of the respective bits of Sourcel [127:0] with
Dest [127:0].

Similarly, at processing block 7154, all of Sourcel bits are
logically AND’ed with the complement of the same respec-
tive bits of the Dest value. That is, bits [127:0] of Interme-
diate Result 2 are assigned the result of bitwise AND
operations of the bits of Sourcel [127:0] with the respective
complemented bits of Dest [127:0].

From block 714d, processing proceeds to block 720d.
From block 715d, processing proceeds to block 721d.

At block 720d, the MSB of each 64-bit quadword of the
first intermediate value, Intermediate Value 1, is determined.
It bits 127 and 63 of Intermediate Value 1 are equal to zero,
then the zero flag is set to a logic-high value at block 7204.
Otherwise, the zero flag is set to a logic-low value at block
7204d.

Similarly, at block 721d, the MSB of each 64-bit quad-
word of the second intermediate value, Intermediate Value 2,
is determined. If bits 127 and 63 of Intermediate Value 2 are
equal to zero, then the carry flag is set to a logic-high value
at block 721d. Otherwise, the carry flag is set to a logic-low
value at block 721d. Neither the original value (Sourcel) of
the source register (SRC1) nor the original value (Dest) of
the destination register (DEST) is modified as a result of the
processing of the method 7004.

From block 7204 and 7214, processing proceeds either to
“End” or to optional processing block 722d. At block 7224,
other state bits within the processor may be modified. For
the embodiment illustrated in FIG. 7d, the AF (auxiliary
carry), OF (overflow), PF (parity) and SF (sign) flags are
assigned to a logic-low value at block 7224.

For embodiments that do not include optional block 7224,
processing ends at “End” after the processing at blocks 7204
and 721d. For embodiments that do include optional block
722¢, processing ends after completion of the processing
block 722c.

Logical-Compare, Set-Zero-and-Carry Flag Circuits

For at least some embodiments, various of the LCSZC
instructions for packed data (e.g., TESTPS and TESTPD,

US 9,489,198 B2

21

discussed above) can execute on multiple data elements in
the same number of clock cycles as a compare operation on
unpacked data. To achieve execution in the same number of
clock cycles, parallelism may be used. That is, elements of
a processor (such as registers and execution units) may be
simultaneously instructed to perform the LCSZC operations
on the data elements. This parallel operation is discussed in
more detail below. FIGS. 8a and 85 are discussed below
with reference to FIG. 1a.

FIG. 8a illustrates a circuit 801 for performing LCSZC
operations on packed data according to at least one embodi-
ment of the invention. The circuit 801 may be, for at least
one embodiment, all or part of the logical compare circuitry
145 illustrated in FIG. 1a.

FIG. 8a depicts a source operand, Sourcel[127:0] 831,
and a destination operand, Dest[127:0] 833. For at least one
embodiment, the source and destination are stored in N-bit
long SIMD registers, such as for example 128-bit Intel®
SSE2 XMM registers (see. e.g., extension registers 210 of
FIG. 2b).

The particular example embodiment illustrated in FIG. 8a
shows a double quadword (128-bit) embodiment of an
LCSZC instruction, where every bit of the 128 bit source
and destination operands are compared with their respective
counterpart. For such embodiment, because each bit is
compared, the operation may operate on, and is functionally
agnostic of, any nature of 128 bits in the source and
destination operands; either or both the source and destina-
tion operands may be packed data, unpacked scalar data,
signed data, or unsigned data. While in some specific
examples packed data sources 831 and destinations 833 may
be represented as having 128-bits, it will be appreciated that
the principals disclosed herein may be extended to other
conveniently selected lengths, such as 80-bits, 128-bits or
256-bits.

Operation control 800 outputs signals on Enable 880 to
control operations performed by the circuit 801. One
embodiment of operation control 800 may comprise, for
example, a decoder 165 and an instruction pointer register
211. Of course, operation control 800 may also comprise
additional circuitry which is not necessary to understanding
the invention. The LCSZC circuit 801 includes two sets
(825, 827) of AND gates, where each set includes one AND
gate for each bit of the source operand. Thus, for an
embodiment where the source and destination have 128 bits,
the first set 825 includes 128 AND gates 819 and the second
set 827 includes 128 AND gates 820. Each of the 128 bit
values of the source and destination operands (see, e.g., bit
values 854 in FIG. 8q) is an input to one of the AND gates
819 in the first set 825 and is also an input to one of the AND
gates 820 of the second set 827. It should be noted that the
second set of AND gates 827 receives the inputs from the
destination operand 833 only after it has been inverted to its
complement value (see inverter logic 844).

The output of each of the AND gates 819 in the first set
825 is an input into an NAND gate 854. At least one purpose
of NAND gate 854 is to determine whether the result of
AND’ing the bits of the source and destination has resulted
in a value of all zeros (logic-low values) and, if so, to pass
a logic-high value to the zero flag 858 in order to set it.

The output of each of the AND gates 820 in the second set
827 is an input into an NAND gate 856. At least one purpose
of NAND gate 856 is to determine whether the result of
AND’ing the bits of the source 831 with the complement of
the bits of the destination 833 has resulted in a value of all
zeros (logic-low values) and, if so, to pass a logic-high value
to the carry flag 860 in order to set it.

5

10

15

20

25

30

35

40

45

50

55

60

65

22

Alternative embodiments of double quadword LCSZC
instructions may include but are not limited to operations for
an unsigned double quadword value in both the source and
destination as well as operations for a signed double quad-
word value in both the source and destination. Other alter-
native embodiments of LCSZC instructions may include
operations that apply to other sizes of signed or unsigned
data elements (see, e.g., FIG. 8b for a signed doubleword
embodiment and FIG. 8¢ for a signed quadword embodi-
ment).

FIG. 85 illustrates at least one embodiment of a circuit
8015 for performing LLCSZC operations on packed data
according to one alternative embodiment of the invention.
Operation control 800 processes the control signal for the
packed LCSZC instructions. Such a packed LCSZC instruc-
tion may be, for an example, a “TESTPS” instruction that
indicates that an LCSZC operation is to be performed on
four packed thirty-two bit values. Each of the packed
thirty-two bit values may represent, for example, single-
precision floating point values. It should be understand that,
for such embodiment, it may be that only one of the
operands (e.g., source 831 or destination 833) contains the
packed single precision floating point values. The other
operand may contain, for example, a bit mask.

FIG. 8a illustrates that operation control 800 outputs
signals on Enable 880 to control LCSZC circuit 8015. [One
of'skill in the art will recognize that the LCSZC circuit 8015
illustrated in FIG. 85 may be implemented by invoking a
subset of the logic elements of LCSZC circuit 801 illustrated
in FIG. 84/.

The LCSZC circuit 8015 includes two sets of AND gates,
where each set includes one AND gate for each bit of the
source operand that is to be compared with the correspond-
ing bit of the destination operand. For the embodiment
illustrated in FIG. 85, the most significant bits for each of
four 32-bit (“doubleword”) data elements are to be com-
pared. Thus, the first set of AND gates includes gates 819,
through 819, and the second set of AND gates includes gates
820, through 820,.

FIG. 8b illustrates that the value of the MSB for each of
the four 32-bit data elements in the source operand 831 and
each of the four 32-bit data elements in the destination
operand 833 is an input to one of the first set of AND gates
819. More specifically, FIG. 85 illustrates that bit 127 of the
source operand 831 and destination operand 833 are both
inputs to gate 819, bit 93 of the source operand 831 and
destination operand 833 are both inputs to gate 819,, bit 63
of the source operand 831 and destination operand 833 are
both inputs to gate 819,, and bit 31 of the source operand
831 and destination operand 833 are both inputs to gate
819,.

FIG. 8b further illustrates that the value of the MSB for
each of the four 32-bit data elements in the source operand
831 and each of the four 32-bit data elements in the
destination operand 833 is an input to one of the second set
of AND gates 820. It should be noted that the second set of
AND gates, 820, through 820, receives the inputs from the
MSB of each doubleword of the destination operand 833
only after they have been inverted to their complement value
(see inverters 844a-844d).

More specifically, FIG. 85 illustrates that bit 127 of the
source operand 831 and the complement of bit 127 of the
destination operand 833 are both inputs to gate 820, bit 93
of the source operand 831 and the complement of bit 93 of
destination operand 833 are both inputs to gate 820, bit 63
of the source operand 831 and the complement of bit 63 of
the destination operand 833 are both inputs to gate 820, and

US 9,489,198 B2

23

bit 31 of the source operand 831 and the complement of bit
31 of the destination operand 833 are both inputs to gate
820,,.

The output of each of the AND gates 819, through 819,
is an input into a NAND gate 855. At least one purpose of
NAND gate 855 is to determine whether the result of
AND’ing the most significant bits of each of the four
doublewords of the source and destination has resulted in a
value of all zeros (logic-low values) and, if so, to pass a
logic-high value to the zero flag 858 in order to set it.

The output of each of the AND gates 820, through 820,
is an input into NAND gate 859. At least one purpose of
NAND gate 859 is to determine whether the result of
AND’ing the bits of the source with the complement of the
bits of the destination has resulted in a value of all zeros
(logic-low values) and, if so, to pass a logic-high value to the
carry flag 860 in order to set it.

Alternative embodiments of a packed LCSZC instruction
that compares the MSB for each of four doublewords may
include but are not limited to operations for packed signed
doubleword values in one operand and a bit mask in the
other operand, unsigned doubleword values in both the
source and destination, and operations for signed double-
word values in both the source and destination, or for a
combination. Other alternative embodiments of LCSZC
instructions may include operations that apply to other sizes
of signed or unsigned data elements.

FIG. 8¢ illustrates at least one embodiment of a circuit
810c¢ for performing LLCSZC operations on packed data
according to another alternative embodiment of the inven-
tion. Operation control 800 processes the control signal for
the packed LCSZC instructions. Such a packed LCSZC
instruction may be, for an example, a “TESTPD” instruction
that indicates that an LCSZC operation is to be performed on
two packed double-precision (64-bit) floating point values.
Operation control 800 outputs signals on Enable 880 to
control LCSZC circuit 801c. [One of skill in the art will
recognize that the LCSZC circuit 801c¢ illustrated in FIG. 8¢
may be implemented by invoking a subset of the logic
elements of LCSZC circuit 801 illustrated in FIG. 8a/.

As with the circuit 8015 discussed above in connection
with FIG. 8b, the LCSZC circuit 801¢ includes two sets of
AND gates, where each set includes one AND gate for each
bit of the source operand that is to be compared with the
corresponding bit of the destination operand. For the
embodiment illustrated in FIG. 8¢, the most significant bits
for each of two 64-bit (“quadword”) data elements are to be
compared. Thus, the first set of AND gates includes gates
819, and 819, and the second set of AND gates includes
gates 820, and 820;.

FIG. 8¢ illustrates that the value of the MSB for each of
the two 64-bit data elements in the source operand 831 and
for each of the two 64-bit data elements in the destination
operand 833 is an input to one of the first set of AND gates
(819, and 819,). More specifically, FIG. 8¢ illustrates that
bit 127 of the source operand 831 and destination operand
833 are both inputs to gate 819, and that bit 63 of the source
operand 831 and destination operand 833 are both inputs to
gate 819;.

FIG. 8¢ further illustrates that the value of the MSB for
each of the two 64-bit data elements in the source operand
831 and for each of the two 64-bit data elements in the
destination operand 833 is an input to one of the second set
of AND gates (820, and 820). It should be noted that the
second set of AND gates, 820, and 820, receives the inputs
from the MSB of each quadword of the destination operand

10

20

25

40

45

60

24

833 only after they have been inverted to their complement
value (see inverters 844a and 844c).

More specifically, FIG. 8¢ illustrates that bit 127 of the
source operand 831 and the complement of bit 127 of the
destination operand 833 are both inputs to gate 820, and that
bit 63 of the source operand 831 and the complement of bit
63 of the destination operand 833 are both inputs to gate
820,.

The output of each of the AND gates 819, and 819, is an
input into a NAND gate 853. At least one purpose of NAND
gate 853 is to determine whether the result of AND’ing the
most significant bits of each of the two quadwords of the
source and destination are both zeros (logic-low values) and,
if so, to pass a logic-high value to the zero flag 858 in order
to set it.

The output of each of the AND gates 820, and 820, is an
input into NAND gate 857. At least one purpose of NAND
gate 857 is to determine whether the result of AND’ing the
most significant bits of each of the two quadwords of the
source and destination are both zeros (logic-low values) and,
if so, to pass a logic-high value to the carry flag 860 in order
to set it.

Alternative embodiments of a packed LCSZC instructions
that compares the MSB for each of two quadwords may
include but are not limited to operations for unsigned
quadword values in both the source and destination as well
as operations for signed quadword values in both the source
and destination, or for a combination. Other alternative
embodiments of LCSZC instructions may include opera-
tions that apply to other sizes of signed or unsigned data
elements.

As is explained above, a decoder 165 may recognize and
decode the control signal received by processor 109, and that
control signal may be the operation code for an LCSZC
instruction. Thus, decoder 165 decodes the operation code
for a LCSZC instruction.

Reference to FIG. 9 illustrates various embodiments of
operation codes that may be utilized to encode the control
signal (operation code) for an LCSZC instruction. FIG. 9
illustrates a format of an instruction 900 according to one
embodiment of the invention. The instruction format 900
includes various fields; these files may include a prefix field
910, an opcode field 920, and operand specifier fields (e.g.,
modR/M, scale-index-base, displacement, immediate, etc.).
The operand specifier fields are optional and include a
modR/M field 930, an SIB field 940, a displacement field
950, and an immediate field 960.

One skilled in the art will recognize that the format 900
set forth in FIG. 9 is illustrative, and that other organizations
of data within an instruction code may be utilized with
disclosed embodiments. For example, the fields 910, 920,
930, 940, 950, 960 need not be organized in the order shown,
but may be re-organized into other locations with respect to
each other and need not be contiguous. Also, the field
lengths discussed herein should not be taken to be limiting.
A field discussed as being a particular member of bytes may,
in alternative embodiments, be implemented as a larger or
smaller field. Also, the term “byte,” while used herein to
refer to an eight-bit grouping, may in other embodiments be
implemented as a grouping of any other size, including 4
bits, 16 bits, and 32 bits.

As used herein, an opcode for a specific instance of an
instruction, such as an LCSZC instruction, may include
certain values in the fields of the instruction format 200, in
order to indicate the desired operation. Such an instruction
is sometimes referred to as “an actual instruction.” The bit

US 9,489,198 B2

25

values for an actual instruction are sometimes referred to
collectively herein as an “instruction code.”

For each instruction code, the corresponding decoded
instruction code uniquely represents an operation to be
performed by an execution unit (such as, e.g., 130 of FIG.
1a) responsive to the instruction code. The decoded instruc-
tion code may include one or more micro-operations.

The contents of the opcode field 920 specify the opera-
tion. For at least one embodiment, the opcode field 920 for
the embodiments of the LCSZC instructions discussed
herein is three bytes in length. The opcode field 920 may
include one, two or three bytes of information. For at least
one embodiment, a three-byte escape opcode value in a
two-byte escape field 118¢ of the opcode field 920 is
combined with the contents of a third byte 925 of the opcode
field 920 to specify an LCSZC operation. This third byte 925
is referenced to herein as an instruction-specific opcode.

FIG. 9 illustrates that, for a second embodiment 928 of an
instruction format for an LCSZC instruction, the three-byte
escape opcode value in the two-byte field 118¢ of the opcode
field 920 is combined with the contents of the prefix field
910 and the contents of the instruction-specific opcode field
925 of the opcode field 920 to specify an LCSZC operation.

For at least one embodiment, the prefix value 0x66 is
placed in the prefix field 910 and is used as part of the
instruction opcode to define the desired operation. That is,
the value in the prefix 910 field is decoded as part of the
opcode, rather than being construed to merely qualify the
opcode that follows. For at least one embodiment, for
example, the prefix value 0x66 is utilized to indicate that the
destination and source operands of an LCSZC instruction
reside in 128-bit Intel® SSE2 XMM registers. Other pre-
fixes can be similarly used. However, for at least some
embodiments of the LCSZC instructions, a prefix may
instead be used in the traditional role of enhancing the
opcode or qualifying the opcode under some operational
condition.

A first embodiment 926 and a second embodiment 928 of
an instruction format both include a 3-byte escape opcode
field 118¢ and an instruction-specific opcode field 925. The
3-byte escape opcode field 118c¢ is, for at least one embodi-
ment, two bytes in length. The instruction format 926 uses
one of four special escape opcodes, called three-byte escape
opcodes. The three-byte escape opcodes are two bytes in
length, and they indicate to decoder hardware that the
instruction utilizes a third byte in the opcode field 920 to
define the instruction. The 3-byte escape opcode field 118¢
may lie anywhere within the instruction opcode and need not
necessarily be the highest-order or lowest-order field within
the instruction.

For at least one embodiment, at least four three-byte
escape opcode values are defined:0x0F3y, where y is 0x8,

40

45

50

26

value “OxOF38” as the three-byte escape opcode value, such
disclosure should not taken to be limiting. Other embodi-
ments may utilize other escape opcode values.

Table 3 below, sets forth examples of LCSZC instruction
codes using prefixes and three-byte escape opcodes.

TABLE 3
Instruction Definition
PTEST xmml, Compare all bits in source 128-bit register or 128-
mxx2/m128 bit memory with 128-bit destination in register;
set ZF if xmm2/m128 AND xmml is all zeros;
otherwise clear ZF. Set CF if xmm2/m128 AND
NOT xmm1 result is all zeros; otherwise clear CF.
TESTPS xmml, Compare MSB for each of four packed
xmm2/m128 doublewords in source (128-bit register or 128-bit

memory) with corresponding MSB for each of
four packed doublewords in destination (128-bit
register); set ZF if MSB (bits 127, 95, 63 and 31)
of xmm2/m128 AND xmml is all zeros;
otherwise clear ZF. Set CF if MSB (bits 127, 95,
63 and 31) xmm?2/m128 AND NOT xmm! result
is all zeros; otherwise clear CF.

Compare MSB for each of two packed quadwords
in source (128-bit register or 128-bit memory)
with corresponding MSB for each of two packed
quadwords in destination (128-bit register); set ZF
if MSB (bits 127 and 63) of xmm?2/m128 AND
xmml is all zeros; otherwise clear ZF. Set CF if
MSB (bits 127 and 63) of xmm2/m128 AND
NOT xmm1 result is all zeros; otherwise clear CF.

TESTPD xmml,
xmm2/m128

For at least one embodiment, the value in the source or
destination operand may be utilized as a mask. The pro-
grammer’s choice regarding whether to use the source or
destination operand as the mask value may be driven, at least
in part, by the desired behavior. For example, using the
second operand (source) as the mask value, the resultant
behavior may be stated as: “If everything under the makes
is “0”, set ZF; if everything under the mask is “1”, set CF.”
On the other hand, when using the first argument (destina-
tion) as the mask value, the resultant behavior may be stated
as: “If everything under the mask is “0”, set ZF; if every-
thing under the mask is “0”, set CF.”

To perform the equivalent of at least some embodiments
of the packed LCSZC instructions discussed above in con-
nection with FIGS. 7¢, 7d, 8b and 8¢, additional instructions
are needed, which adds machine cycle latency to the opera-
tion. For example, the pseudocode set forth in Table 4,
below, illustrates the savings in instructions using a PTEST
instruction versus an instruction set that does not include the
PTEST instruction.

TABLE 4

PTEST instruction -

No PTEST Instruction -

movdga xmm0, _ x[eax]

pempeqd xmmoO,
const__00000001000000010000000100000001
PTEST xmmO, xmmO

Jz all_under_mask_ zero

movdga xmm0, _ x[eax]
pempeqd xmmoO,
const__00000001000000010000
000100000001

pmovmskb eax, xmmO

Test eax, eax

Jz all__under_mask_ zero

0x9, OxA or 0xB. While certain embodiments of LCSZC
instruction opcodes are disclosed herein as including the

65

The pseudocode set forth in Table 4 helps to illustrate that
the described embodiments of the LCSZC instruction can be

US 9,489,198 B2

27

used to improve the performance of software code. As a
result, the LCSZC instruction can be used in a general
purpose processor to improve the performance of a greater
number algorithms than the described prior art instructions.

Alternative Embodiments

While the described embodiments use comparisons of the
MSB for 32-bit data elements and 64-bit data elements for
the packed embodiments of the LCSZC instructions, alter-
native embodiments may use different sized inputs, differ-
ent-sized data elements, and/or comparison of different bits
(e.g., the LSB of the data elements). In addition, while in
some described embodiments Sourcel and Dest each con-
tain 128-bits of data, alternative embodiment could operate
on packed data having more or less data. For example, one
alternative embodiment operates on packed data having
64-bits of data. Also, the bits compared by the LCSZC
instruction need not necessarily represent the same respec-
tive bit position for each of the packed data elements.

While the invention has been described in terms of several
embodiments, those skilled in the art will recognize that the
invention is not limited to the embodiments described. The
method and apparatus of the invention can be practiced with
modification and alteration within the spirit and scope of the
appended claims. The description is thus to be regarded as
illustrative instead of limiting on the invention.

The above description is intended to illustrate preferred
embodiments of the present invention. From the discussion
above it should also be apparent that especially in such an
area of technology, where growth is fast and further
advancements are not easily foreseen, the invention may be
modified in arrangement and detail by those skilled in the art
without departing from the principles of the present inven-
tion within the scope of the accompanying claims.

What is claimed is:

1. A method comprising:

receiving in a processor, a first single instruction multiple

data (SIMD) coprocessor comparison instruction to
compare a first plurality of packed single-precision
floating point (SPFP) data elements with a second
plurality of SPFP data elements;

receiving in a processor, a second SIMD coprocessor

comparison instruction to compare a third plurality of
packed data elements with a fourth plurality of packed
data elements; and

responsive to said second SIMD coprocessor comparison

instruction, setting at least one bit of data to indicate a
result of the second SIMD coprocessor comparison

10

15

20

25

30

35

40

45

28

instruction, wherein the at least one bit of data is to
control operation of a branch instruction.

2. The method of claim 1 wherein the first plurality and
the second plurality of SPFP data elements are stored in one
set of physical registers for storing floating point values.

3. The method of claim 1 wherein the third plurality and
the fourth plurality of packed data elements are stored in one
set of physical registers for storing vector data elements.

4. The method of claim 3 wherein the third plurality and
the fourth plurality of packed data elements are each a byte
in length.

5. The method of claim 3 wherein the third plurality and
the fourth plurality of packed data elements are each a word
in length.

6. A processor, comprising:

instruction decode logic to decode one or more instruc-

tions;

a data register file including a set of packed data registers,

the packed data registers to store packed single-preci-
sion floating point (SPFP) data elements including a
first plurality of SPFP data elements and a second
plurality of SPFP data elements; and

one or more execution units coupled with said instruction

decode logic to execute a first SIMD coprocessor
comparison instruction to compare the first plurality of
SPFP data elements with the second plurality of SPFP
data elements;

said one or more execution units to also execute a second

SIMD coprocessor comparison instruction to compare
a third plurality of packed data elements with a fourth
plurality of packed data elements, and responsive to
said second SIMD coprocessor comparison instruction,
to set at least one bit of data to indicate a result of the
second SIMD coprocessor comparison instruction,
wherein the at least one bit of data is to control
operation of a branch instruction.

7. The processor of claim 6 wherein the third plurality and
the fourth plurality of packed data elements are stored in a
set of physical registers for storing vector data elements.

8. The processor of claim 7 wherein the third plurality and
the fourth plurality of packed data elements are each a byte
in length.

9. The processor of claim 7 wherein the third plurality and
the fourth plurality of packed data elements are each a word
in length.

